Saturday, July 11, 2015

WEEK 3 (EXPRESSIONS)

CLICK THIS TO DOWNLOAD --------->>>> LESSON 3: (EXPRESSION)

ALGEBRA (WEEK 3)

Kind of Expression
1.     Monomial expression
A term in which its variables have positive integers exponent

Example:   2x2, 3xyz,  4x2y2z,  3x2/2

Not monomial:    2x-2   1/x  xy-2z,  2√x

2.     Polynomial expression
An expression with two or more terms
A combination of monomials using addition and subtraction

Examples:   2x + 1,  2x2 – y,  x +  2y – 3z,    4x2y + 4xy – 3y

Not polynomials:    2x + y-1,   1/y – 1/x ,   y-1 / x + 1,   2x + √y

2.1  Binomial expression – polynomial with two terms
       2x + y,    5x2 – 3,    x2 + 2y2
2.2 Trinomial expression – polynomial with three terms
      4x2 + 3y2 – 3,    x2 – 2x + 3

3.     Rational Expression
An expression in the form of  p/r
 Where p and r are polynomials
Example:


4.     Radical Expression
Expression in the form of   
   where n Is an integer and p is a polynomial

Example:


ADDING AND SUBTRACTING EXPRESSION

Similar terms:  two or more term with the same literal coefficient

Example:
2x,  5x,  -4x
2x2y, 14x2y,  -4x2y
12xy,  10yx,  -3 xy
9xyz, 3xzy,  4yx

Rules in adding or subtracting terms
1.     Only similar terms can be added
2.     Add or subtract the numerical coefficient of similar term
3.     Attached the common literal coefficient
Example 1.
            3xy + 5xy   (similar term)
            Add the numerical coefficient:    3 + 5  = 8
            Then attach the common literal coefficient :  8xy
Example 2:
          4xyz   + 3mno   -2xyz   + mno  
 Add the similar term:
     Similar term are   4xyz  and  - 2xyz,      3mno and mno
            4-2   = 2, then attach the common literal coefficient    2xyz
             3 + 1 = 4, then attach the common literal coefficient   4mno
            Answer is    2xyz + 4mno



Note: you cannot add dissimilar term:

            X + y = cannot be added, so answer is x + y
            Y + 1 = cannot be added, so answer is  y + 1
            x + 2x + y = 3x + y




Adding and subtracting Expression:
Addition
1.     Add 2x2 – 2x + 3 and 5x2 -3x + 5
SSOLUTION:
(2x2 – 2x + 3) + (5x2 -3x + 5)
simplify
=  2x2 – 2x + 3 + 5x2 -3x + 5
Combine all similar term
=  2x2+ 5x2– 2x  -3x + 5 + 3
Add similar term
= 7x2 – 5x + 8

2nd method (row method)  
2x2 – 2x + 3
5x2 -3x + 5
7x2 – 5x + 8


2.     Add:     3x3–3x2–4x–3  ,   2x3 – 2x + 2 and  –x3 –2x2 +4x -5

            By row method
                  Note:    Line up expression,only similar term can be line up in the same row. Then add each row
                        3x3 –3x2 –4x–3 
2x       – 2x + 2
–x3 –2x2 +4x –5
4 x3–4 x2– 2x – 6

SUBTRACTION OF EXPRESSION:

1.     (2x2 – 2x + 3)   –  (x2 + 4x – 5)

Step 1, simplify by using distributive method:

            2x2 – 2x + 3   –  x2 – 4x + 5  Note:  (–  ) should be distributed to all member of expression in subtrahend

Step 2. Combine all similar term then add,

                              2x2 –  x2 – 2x  – 4x + 3   + 5 

                        =    x2 – 6x  + 8


            2nd Method: Row method

                                                Change the sign of all subtrahend, then add
      2x2 – 2x + 3                               2x2 – 2x + 3
x2 + 4x – 5       -------->              –x2 – 4x + 5
                                                x2 – 6x  + 8




Example 2:

            Subtract  4x3 – 3x2 – 2x + 5  from  6x3 – 2x2 + 5x– 2


Solution:

             6x3 – 2x2 + 5x– 2                        6x3 – 2x2 + 5x– 2
                    -  4x3 – 3x2 – 2x + 5        -------->  +  –4x3+3x2  +2x – 5 
                                                                         2 x3 + x2 + 7x– 7




             

No comments:

Post a Comment

 

Blogger news

Blogroll

About